Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 643
1.
Nat Commun ; 13(1): 923, 2022 02 17.
Article En | MEDLINE | ID: mdl-35177668

N-methyl-D-aspartate receptors (NMDARs) are critically involved in basic brain functions and neurodegeneration as well as tumor invasiveness. Targeting specific subtypes of NMDARs with distinct activities has been considered an effective therapeutic strategy for neurological disorders and diseases. However, complete elimination of off-target effects of small chemical compounds has been challenging and thus, there is a need to explore alternative strategies for targeting NMDAR subtypes. Here we report identification of a functional antibody that specifically targets the GluN1-GluN2B NMDAR subtype and allosterically down-regulates ion channel activity as assessed by electrophysiology. Through biochemical analysis, x-ray crystallography, single-particle electron cryomicroscopy, and molecular dynamics simulations, we show that this inhibitory antibody recognizes the amino terminal domain of the GluN2B subunit and increases the population of the non-active conformational state. The current study demonstrates that antibodies may serve as specific reagents to regulate NMDAR functions for basic research and therapeutic objectives.


Antibodies, Monoclonal/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/ultrastructure , Cloning, Molecular , Cryoelectron Microscopy , Crystallography, X-Ray , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/pharmacology , Immunoglobulin Fab Fragments/ultrastructure , Immunoglobulin Variable Region/genetics , Immunoglobulin Variable Region/isolation & purification , Immunoglobulin Variable Region/pharmacology , Immunoglobulin Variable Region/ultrastructure , Molecular Dynamics Simulation , Oocytes , Rats , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology , Recombinant Proteins/ultrastructure , Sf9 Cells , Spodoptera , Xenopus laevis
2.
Biotechnol Bioeng ; 118(12): 4815-4828, 2021 12.
Article En | MEDLINE | ID: mdl-34585737

Monoclonal antibodies are the leading class of biopharmaceuticals in terms of numbers approved for therapeutic purposes. Antigen-binding fragments (Fab) are also used as biotherapeutics and used widely in research applications. The dominant expression systems for full-length antibodies are mammalian cell-based, whereas for Fab molecules the preference has been an expression in bacterial systems. However, advances in CHO and downstream technologies make mammalian systems an equally viable option for small- and large-scale Fab production. Using a panel of full-length IgG antibodies and their corresponding Fab pair with different antigen specificities, we investigated the impact of the IgG and Fab molecule format on production from Chinese hamster ovary (CHO) cells and assessed the cellular capability to process and produce these formats. The full-length antibody format resulted in the recovery of fewer mini-pools posttransfection when compared to the corresponding Fab fragment format that could be interpreted as indicative of a greater overall burden on cells. Antibody-producing cell pools that did recover were subsequently able to achieve higher volumetric protein yields (mg/L) and specific productivity than the corresponding Fab pools. Importantly, when the actual molecules produced per cell of a given format was considered (as opposed to mass), CHO cells produced a greater number of Fab molecules per cell than obtained with the corresponding IgG, suggesting that cells were more efficient at making the smaller Fab molecule. Analysis of cell pools showed that gene copy number was not correlated to the subsequent protein production. The amount of mRNA correlated with secreted Fab production but not IgG, whereby posttranscriptional processes act to limit antibody production. In summary, we provide the first comparative description of how full-length IgG and Fab antibody formats impact on the outcomes of a cell line construction process and identify potential limitations in their production that could be targeted for engineering increases in the efficiency in the manufacture of these recombinant antibody formats.


Immunoglobulin Fab Fragments , Immunoglobulin G , Recombinant Proteins , Animals , CHO Cells , Cell Culture Techniques , Chromatography, High Pressure Liquid , Cricetinae , Cricetulus , Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/analysis , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification , Immunoglobulin G/metabolism , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
3.
Protein Expr Purif ; 184: 105891, 2021 08.
Article En | MEDLINE | ID: mdl-33895263

Immunoglobulin A (IgA) proteinase from Clostridium ramosum is the enzyme which cleaves IgA of both subclasses; in contrast, the other bacterial proteinases cleave only IgA1 proteins. Previous reports characterized the activity of proteinase naturally secreted by C. ramosum specific for the normal human serum IgA of IgA1 and IgA2m(1) subclasses and also for secretory IgA (SIgA). Its amino acid sequence was determined, and the recombinant proteinase which cleaved IgA of both subclasses was prepared. Here we report the optimized expression, purification, storage conditions and activity testing against purified human milk SIgA. The recombinant C. ramosum IgA proteinase isolated in the high degree of purity exhibited almost complete cleavage of SIgA of both subclasses. The proteinase remained active upon storage for more than 10 month at -20 °C without substantial loss of enzymatic activity. Purified SIgA fragments are suitable for studies of all antigen-binding and Fc-dependent functions of SIgA involved in the protection against infections with mucosal pathogens.


Bacterial Proteins/chemistry , Firmicutes/enzymology , Immunoglobulin A, Secretory/chemistry , Immunoglobulin Fab Fragments , Immunoglobulin Fc Fragments , Peptide Hydrolases/chemistry , Bacterial Proteins/genetics , Firmicutes/genetics , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/isolation & purification , Peptide Hydrolases/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
4.
J Am Soc Mass Spectrom ; 32(6): 1326-1335, 2021 Jun 02.
Article En | MEDLINE | ID: mdl-33570406

Immunoglobulins A (IgA) include some of the most abundant human antibodies and play an important role in defending mucosal surfaces against pathogens. The unique structural features of the heavy chain of IgA subclasses (called IgA1 and IgA2) enable them to polymerize via the joining J-chain, resulting in IgA dimers but also higher oligomers. While secretory sIgA oligomers are dominant in milk and saliva, IgAs exist primarily as monomers in serum. No method currently allows disentangling the millions of unique IgAs potentially present in the human antibody repertoire. Obtaining unambiguous sequence reads of their hypervariable antigen-binding regions is a prerequisite for IgA identification. We here report a mass spectrometric method that uses electron capture dissociation (ECD) to produce straightforward-to-read sequence ladders of the variable parts of both the light and heavy chains of IgA1s, in particular, of the functionally critical CDR3 regions. We directly compare the native top-down ECD spectra of a heavily and heterogeneously N- and O-glycosylated anti-CD20 IgA1, the corresponding N-glycosylated anti-CD20 IgG1, and their Fab parts. We show that while featuring very different MS1 spectra, the native top-down ECD MS2 spectra of all four species are nearly identical, with cleavages occurring specifically within the CDR3 and FR4 regions of both the heavy and light chain. From the sequence-informative ECD data of an intact glycosylated IgA1, we foresee that native top-down ECD will become a valuable complementary tool for the de novo sequencing of IgA1s from milk, saliva, or serum.


Antigens/metabolism , Immunoglobulin A/chemistry , Immunoglobulin A/metabolism , Mass Spectrometry/methods , Cell Line , Complementarity Determining Regions/chemistry , Disulfides/chemistry , Glycosylation , Humans , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism , Proteomics/methods
5.
Article En | MEDLINE | ID: mdl-33486219

The ortho-phospho-tyrosine (P-Tyr) pseudoaffinity ligand was immobilized via ether linkage onto polyacrylamide-alginate (PAAm-Alg)-epoxy cryogels prepared according to two different approaches in order to explore their performance in the immunoglobulin G (IgG) purification from human serum. In the first approach, the P-Tyr was attached to cryogel prepared by cryocopolymerization of acrylamide and alginate with allyl glycidyl ether (AGE) as functional comonomer, and methylenebisacrylamide and Ca(II) as crosslinkers, obtaining the PAAm-Alg-AGE-P-Tyr. In the second approach, the PAAm-Alg was synthesized under the same conditions, but without AGE, and the P-Tyr was coupled to epichlorohydrin (ECH)-activated cryogel, obtaining the PAAm-Alg-ECH-P-Tyr. Both pseudoaffinity cryogels were characterized by scanning electron microscopy, swelling tests, porosity, ligand density, and flow dynamics. The human IgG differently interacted with the PAAm-Alg-ECH-P-Tyr and PAAm-Alg-AGE-P-Tyr cryogels, depending on the pH and adsorption buffer system used. The selectivity analyzed by electrophoretic profiles was similar for both cryogels, but PAAm-Alg-ECH-P-Tyr achieved higher IgG adsorption capacity (dynamic capacity of 12.62 mg of IgG/mL of cryogel). The IgG purity assayed by ELISA was 95%. The maximum IgG adsorption capacity and dissociation constant of the PAAm-Alg-ECH-P-Tyr, determined by Langmuir isotherm, were found to be 91.75 mg IgG/g of dry cryogel and 4.60 × 10-6 mol/L at pH 6.0 from aqueous solutions. The PAAm-Alg-AGE-P-Tyr showed potential to purify the Fab fragments from papain-digested human IgG solution at pH 7.0. Fab fragments were separated from Fc fragments (but with uncleaved IgG) in eluted fractions (analyzed by the Western blot technique), with yield of 82% and purity of 95% (determined by radial immunodiffusion).


Alginates/chemistry , Cryogels/chemistry , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/isolation & purification , Phosphotyrosine/chemistry , Acrylic Resins/chemistry , Blotting, Western , Chromatography, Affinity , Epichlorohydrin/chemistry , Humans , Hydrogen-Ion Concentration , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin G/chemistry , Immunoglobulin G/metabolism
6.
J Biol Chem ; 296: 100176, 2021.
Article En | MEDLINE | ID: mdl-33303630

Proteins are modulated by a variety of posttranslational modifications including methylation. Despite its importance, the majority of protein methylation modifications discovered by mass spectrometric analyses are functionally uncharacterized, partly owing to the difficulty in obtaining reliable methylsite-specific antibodies. To elucidate how functional methylsite-specific antibodies recognize the antigens and lead to the development of a novel method to create such antibodies, we use an immunized library paired with phage display to create rabbit monoclonal antibodies recognizing trimethylated Lys260 of MAP3K2 as a representative substrate. We isolated several methylsite-specific antibodies that contained unique complementarity determining region sequence. We characterized the mode of antigen recognition by each of these antibodies using structural and biophysical analyses, revealing the molecular details, such as binding affinity toward methylated/nonmethylated antigens and structural motif that is responsible for recognition of the methylated lysine residue, by which each antibody recognized the target antigen. In addition, the comparison with the results of Western blotting analysis suggests a critical antigen recognition mode to generate cross-reactivity to protein and peptide antigen of the antibodies. Computational simulations effectively recapitulated our biophysical data, capturing the antibodies of differing affinity and specificity. Our exhaustive characterization provides molecular architectures of functional methylsite-specific antibodies and thus should contribute to the development of a general method to generate functional methylsite-specific antibodies by de novo design.


Antibodies, Monoclonal/chemistry , Antigens/chemistry , Immunoglobulin Fab Fragments/chemistry , Lysine/chemistry , MAP Kinase Kinase Kinase 2/chemistry , Peptides/chemistry , Protein Processing, Post-Translational , Amino Acid Sequence , Animals , Antibodies, Monoclonal/biosynthesis , Antibodies, Monoclonal/isolation & purification , Antibody Affinity , Antibody Specificity , Antigens/genetics , Antigens/immunology , Binding Sites , Complementarity Determining Regions/chemistry , Complementarity Determining Regions/genetics , Complementarity Determining Regions/immunology , Cross Reactions , Crystallography, X-Ray , Humans , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/isolation & purification , Kinetics , Lysine/immunology , MAP Kinase Kinase Kinase 2/genetics , MAP Kinase Kinase Kinase 2/immunology , Methylation , Molecular Dynamics Simulation , Peptide Library , Peptides/genetics , Peptides/immunology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Rabbits
7.
Methods Mol Biol ; 2247: 59-76, 2021.
Article En | MEDLINE | ID: mdl-33301112

Mammalian cells are the most commonly used production system for therapeutic antibodies. Protocols for the expression of recombinant antibodies in HEK293-6E cells in different antibody formats are described in detail. As model, antibodies against Kallikrein-related peptidase 7 (KLK7) were used. KLK7 is a key player in skin homeostasis and represents an emerging target for pharmacological interventions. Potent inhibitors can not only help to elucidate physiological and pathophysiological functions but also serve as a new archetype for the treatment of inflammatory skin disorders. Phage display-derived affinity-matured human anti-KLK7 antibodies were converted to scFv-Fc, IgG, and Fab formats and transiently produced in the mammalian HEK293-6E system. For the production of the corresponding antigen-KLK7-the baculovirus expression vector system (BEVS) and virus-free expression in Hi5 insect cells were used in a comparative approach. The target proteins were isolated by various chromatographic methods in a one- or multistep purification strategy. Ultimately, the interaction between anti-KLK7 and KLK7 was characterized using biolayer interferometry. Here, protocols for the expression of recombinant antibodies in different formats are presented and compared for their specific features. Furthermore, biolayer interferometry (BLI), a fast and high-throughput biophysical analytical technique to evaluate the kinetic binding constant and affinity constant of the different anti-KLK7 antibody formats against Kallikrein-related peptidase 7 is presented.


Antibodies/genetics , Antibody Formation/genetics , Gene Expression , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Antibodies/isolation & purification , Baculoviridae/genetics , Chromatography, Affinity , Gene Order , Genetic Vectors/genetics , HEK293 Cells , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/isolation & purification , Immunoglobulin G/genetics , Immunoglobulin G/isolation & purification , Kallikreins/metabolism , Recombinant Fusion Proteins/isolation & purification , Single-Chain Antibodies/genetics , Single-Chain Antibodies/isolation & purification , Transfection
8.
Methods Mol Biol ; 2247: 77-103, 2021.
Article En | MEDLINE | ID: mdl-33301113

Fv and Fab antibody fragments are versatile co-crystallization partners that aid in the structural determination of otherwise "uncrystallizable" proteins, including human/mammalian membrane proteins. Accessible methods for the rapid and reliable production of recombinant antibody fragments have been long sought. In this chapter, we describe the concept and protocols of the intervening removable affinity tag (iRAT) system for the efficient production of Fv and Fab fragments in milligram quantities, which are sufficient for structural studies. As an extension of the iRAT system, we also provide a new method for the creation of genetically encoded fluorescent Fab fragments, which are potentially useful as molecular devices in various basic biomedical and clinical procedures, such as immunofluorescence cytometry, bioimaging, and immunodiagnosis.


Chromatography, Affinity , Immunoglobulin Fragments/biosynthesis , Immunoglobulin Fragments/isolation & purification , Recombinant Fusion Proteins , Amino Acid Sequence , Animals , Antibody Affinity , Baculoviridae/genetics , Base Sequence , Cell Line , Chromatography, Affinity/methods , Cloning, Molecular , Crystallography, X-Ray , Gene Expression , Gene Order , Humans , Immunoglobulin Fab Fragments/biosynthesis , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fragments/chemistry , Immunoglobulin Fragments/genetics , Models, Molecular , Plasmids/genetics , Protein Conformation , Proteolysis , Sf9 Cells , Structure-Activity Relationship
9.
J Chromatogr A ; 1638: 461702, 2021 Feb 08.
Article En | MEDLINE | ID: mdl-33229006

Antibody fragments (Fab) are often produced by recombinant methods in Escherichia coli as no glycosylation is needed. Besides the correctly expressed Fab molecule, a multitude of host cell impurities and product related impurities are present in the crude sample. The identification and characterization of the product-related impurities, such as modified Fab-molecules or free light chain, are of utmost importance. The objective of this work was to design a purification strategy to isolate and characterize Fab and related impurities. A three-dimensional chromatography method was established, consisting of two affinity steps (Protein G and Protein L) and subsequent cation exchange chromatography, followed by mass spectrometry analysis of the purified samples. The procedure was automated by collecting the eluted target species in loops and directly loading the samples onto the high-resolution cation exchange chromatography column. As an example, four different Fab molecules are characterized. All four samples contained mainly the correct Fab, while only one showed extensive N-terminal pyroglutamate formation of the Fab. In another case, we found a light chain variant with uncleaved amino acids from the lead molecule, which was not used for the formation of whole Fab as only correct Fab was found in that sample. Impurities with lower molecular weights, which were bound on the Protein L column, were observed in all samples, and identified as fragments of the light chain. In conclusion, we have devised a platform for characterizing Fab and Fab-related impurities, which significantly facilitated strain selection and optimization of cultivation conditions.


Chromatography/methods , Complex Mixtures/chemistry , Escherichia coli/metabolism , Immunoglobulin Fragments/isolation & purification , Glycosylation , Immunoglobulin Fab Fragments/isolation & purification , Mass Spectrometry , Molecular Weight , Recombinant Proteins/isolation & purification
10.
Int J Mol Sci ; 21(21)2020 Oct 28.
Article En | MEDLINE | ID: mdl-33126648

Monoclonal antibodies (mAbs) constitute a rapidly growing biopharmaceutical sector. However, their growth is impeded by high failure rates originating from failed clinical trials and developability issues in process development. There is, therefore, a growing need for better in silico tools to aid in risk assessment of mAb candidates to promote early-stage screening of potentially problematic mAb candidates. In this study, a quantitative structure-activity relationship (QSAR) modelling workflow was designed for the prediction of hydrophobic interaction chromatography (HIC) retention times of mAbs. Three novel descriptor sets derived from primary sequence, homology modelling, and atomistic molecular dynamics (MD) simulations were developed and assessed to determine the necessary level of structural resolution needed to accurately capture the relationship between mAb structures and HIC retention times. The results showed that descriptors derived from 3D structures obtained after MD simulations were the most suitable for HIC retention time prediction with a R2 = 0.63 in an external test set. It was found that when using homology modelling, the resulting 3D structures became biased towards the used structural template. Performing an MD simulation therefore proved to be a necessary post-processing step for the mAb structures in order to relax the structures and allow them to attain a more natural conformation. Based on the results, the proposed workflow in this paper could therefore potentially contribute to aid in risk assessment of mAb candidates in early development.


Antibodies, Monoclonal/analysis , Antibodies, Monoclonal/chemistry , Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/chemistry , Molecular Dynamics Simulation , Antibodies, Monoclonal/isolation & purification , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fab Fragments/isolation & purification , Models, Chemical , Quantitative Structure-Activity Relationship
11.
Article En | MEDLINE | ID: mdl-33091678

The continuous bed bioreactor systems have been used for the production of protein therapeutics, such as IgG, using immobilized enzyme in biopharmaceutical applications. We developed macroporous poly(hydroxyethyl methacrylate-co-glycidyl methacrylate) cryogel-based bioreactor matrix using sodium dodecyl sulfate as surfactans in the presence of ethylene glycol dimethacrylate as cross linking agent by bulk polymerization. The developed polyGMA immobilized bioreactor with papain enzyme was used for specific fragmentation of immunoglobulin G. The catalysis efficiency for immobilized enzyme were investigated in comparison with free enzyme. The immobilized papain displayed broad catalytic activity over a variety of conditions, with maximal activity around pH 7.0 and 70 °C. The Michaelis-Menten kinetic constant (Km), the maximum reaction velocity (Vmax), and the catalytic efficiency (kcat) for free enzyme were 0.1097 mg/mL, 29.9 mg/mL/min, and 92.01 1/min, respectively, whereas for immobilized enzyme, Km, Vmax, and kcat values were 0.1078 mg/mL, 30.53 mg/mL/min, and 94.3 1/min, respectively. In a further step, after digestion, remarkable digestion products of bioreactor, Fab and Fc fragments, produced with immobilized papain bioreactors were analyzed in two ways by SDS-PAGE and reversed-phase HPLC; it was demonstrated that papain immobilized bioreactor successfully used for the digestion of human IgG with high activity. Therefore, the polyGMA cryogel immobilized with papain exhibited a very effective matrix for the bioreactor which can be considered as an alternative bioreactor matrix with great promise in biopharmaceutical applications.


Bioreactors , Enzymes, Immobilized/metabolism , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fc Fragments/isolation & purification , Papain/metabolism , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase , Cryogels/chemistry , Electrophoresis, Polyacrylamide Gel , Enzymes, Immobilized/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/analysis , Immunoglobulin Fc Fragments/metabolism , Papain/chemistry
12.
Protein Expr Purif ; 175: 105712, 2020 11.
Article En | MEDLINE | ID: mdl-32738441

WuXiBody is a novel bispecific antibody (bsAb) platform developed by WuXi Biologics. Its key feature is the replacement of one parental antibody's CH1/CL constant region with the T cell receptor (TCR) constant domain, a design aimed at promoting cognate heavy chain (HC)-light chain (LC) pairing. BsAbs based on WuXiBody can adopt either asymmetric or symmetric format. LC-missing species, a byproduct frequently associated with bsAb containing sequence engineered Fab arm, is also identified during WuXiBody production. Nevertheless, WuXiBody's unique design greatly facilitates removal of this type of impurity, which can otherwise be difficult to clear. In this work, with two concrete cases (WuXiBodies with asymmetric and symmetric designs, respectively), we showed that Capto MMC ImpRes mixed-mode chromatography can effectively remove LC-missing byproducts as well as aggregates, demonstrating that this resin is a powerful tool for WuXiBody purification.


Antibodies, Bispecific , Antibodies, Monoclonal , Immunoglobulin Fab Fragments , Immunoglobulin G , Protein Multimerization , Antibodies, Bispecific/chemistry , Antibodies, Bispecific/isolation & purification , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/isolation & purification , Chromatography, Liquid , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/chemistry , Immunoglobulin G/isolation & purification
13.
Cell ; 182(4): 828-842.e16, 2020 08 20.
Article En | MEDLINE | ID: mdl-32645326

Neutralizing antibody responses to coronaviruses mainly target the receptor-binding domain (RBD) of the trimeric spike. Here, we characterized polyclonal immunoglobulin Gs (IgGs) and Fabs from COVID-19 convalescent individuals for recognition of coronavirus spikes. Plasma IgGs differed in their focus on RBD epitopes, recognition of alpha- and beta-coronaviruses, and contributions of avidity to increased binding/neutralization of IgGs over Fabs. Using electron microscopy, we examined specificities of polyclonal plasma Fabs, revealing recognition of both S1A and RBD epitopes on SARS-CoV-2 spike. Moreover, a 3.4 Å cryo-electron microscopy (cryo-EM) structure of a neutralizing monoclonal Fab-spike complex revealed an epitope that blocks ACE2 receptor binding. Modeling based on these structures suggested different potentials for inter-spike crosslinking by IgGs on viruses, and characterized IgGs would not be affected by identified SARS-CoV-2 spike mutations. Overall, our studies structurally define a recurrent anti-SARS-CoV-2 antibody class derived from VH3-53/VH3-66 and similarity to a SARS-CoV VH3-30 antibody, providing criteria for evaluating vaccine-elicited antibodies.


Antibodies, Neutralizing/chemistry , Betacoronavirus/chemistry , Coronavirus Infections/immunology , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/chemistry , Pneumonia, Viral/immunology , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/blood , Coronavirus Infections/therapy , Cross Reactions , Cryoelectron Microscopy , Epitope Mapping , Epitopes , Humans , Immunization, Passive , Immunoglobulin Fab Fragments/blood , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/ultrastructure , Immunoglobulin G/blood , Immunoglobulin G/isolation & purification , Immunoglobulin G/ultrastructure , Middle East Respiratory Syndrome Coronavirus/chemistry , Middle East Respiratory Syndrome Coronavirus/immunology , Models, Molecular , Pandemics , Pneumonia, Viral/blood , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , COVID-19 Serotherapy
14.
Medicina (B Aires) ; 80 Suppl 3: 1-6, 2020.
Article En | MEDLINE | ID: mdl-32658841

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab')2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab')2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Antibodies, Viral , Coronavirus Infections/therapy , Immune Sera/immunology , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin G/isolation & purification , Pandemics , Pneumonia, Viral , Spike Glycoprotein, Coronavirus , Animals , Antibodies, Viral/chemistry , Antibodies, Viral/immunology , Antibodies, Viral/isolation & purification , Argentina , Betacoronavirus , COVID-19 , Horses , Humans , Immunization, Passive , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin G/chemistry , Neutralization Tests , SARS-CoV-2 , COVID-19 Serotherapy
15.
Sci Rep ; 10(1): 11669, 2020 07 15.
Article En | MEDLINE | ID: mdl-32669569

G-protein-coupled receptors (GPCRs)-the largest family of cell-surface membrane proteins-mediate the intracellular signal transduction of many external ligands. Thus, GPCRs have become important drug targets. X-ray crystal structures of GPCRs are very useful for structure-based drug design (SBDD). Herein, we produced a new antibody (SRP2070) targeting the thermostabilised apocytochrome b562 from Escherichia coli M7W/H102I/R106L (BRIL). We found that a fragment of this antibody (SRP2070Fab) facilitated the crystallisation of the BRIL-tagged, ligand bound GPCRs, 5HT1B and AT2R. Furthermore, the electron densities of the ligands were resolved, suggesting that SPR2070Fab is versatile and adaptable for GPCR SBDD. We anticipate that this new tool will significantly accelerate structure determination of other GPCRs and the design of small molecular drugs targeting them.


Antibodies, Monoclonal/chemistry , Cytochrome b Group/chemistry , Escherichia coli Proteins/chemistry , Immunoglobulin Fab Fragments/chemistry , Receptor, Angiotensin, Type 2/chemistry , Receptor, Serotonin, 5-HT1B/chemistry , Recombinant Fusion Proteins/chemistry , Amino Acid Sequence , Angiotensin II/chemistry , Angiotensin II/metabolism , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/isolation & purification , Antibodies, Monoclonal/metabolism , Baculoviridae/genetics , Baculoviridae/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Cytochrome b Group/genetics , Cytochrome b Group/metabolism , Ergotamine/chemistry , Ergotamine/metabolism , Escherichia coli/chemistry , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Humans , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/metabolism , Mice , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , Receptor, Serotonin, 5-HT1B/genetics , Receptor, Serotonin, 5-HT1B/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sf9 Cells , Spodoptera
16.
Medicina (B.Aires) ; 80(supl.3): 1-6, June 2020. ilus, graf, tab
Article En | LILACS | ID: biblio-1135184

The disease named COVID-19, caused by the SARS-CoV-2 coronavirus, is currently generating a global pandemic. Vaccine development is no doubt the best long-term immunological approach, but in the current epidemiologic and health emergency there is a need for rapid and effective solutions. Convalescent plasma is the only antibody-based therapy available for COVID-19 patients to date. Equine polyclonal antibodies (EpAbs) put forward a sound alternative. The new generation of processed and purified EpAbs containing highly purified F(ab’)2 fragments demonstrated to be safe and well tolerated. EpAbs are easy to manufacture allowing a fast development and scaling up for a treatment. Based on these ideas, we present a new therapeutic product obtained after immunization of horses with the receptor-binding domain of the viral Spike glycoprotein. Our product shows around 50 times more potency in in vitro seroneutralization assays than the average of convalescent plasma. This result may allow us to test the safety and efficacy of this product in a phase 2/3 clinical trial to be conducted in July 2020 in the metropolitan area of Buenos Aires, Argentina.


La enfermedad denominada COVID-19 es causada por el coronavirus SARS-CoV-2 y es actualmente considerada una pandemia a nivel global. El desarrollo de vacunas es sin duda la mejor estrategia a largo plazo, pero debido a la emergencia sanitaria, existe una necesidad urgente de encontrar soluciones rápidas y efectivas para el tratamiento de la enfermedad. Hasta la fecha, el uso de plasma de convalecientes es la única inmunoterapia disponible para pacientes hospitalizados con COVID-19. El uso de anticuerpos policlonales equinos (EpAbs) es otra alternativa terapéutica interesante. La nueva generación de EpAbs incluyen el procesamiento y purificación de los mismos y la obtención de fragmentos F(ab’)2 con alta pureza y un excelente perfil de seguridad en humanos. Los EpAbs son fáciles de producir, lo cual permite el desarrollo rápido y la elaboración a gran escala de un producto terapéutico. En este trabajo mostramos el desarrollo de un suero terapéutico obtenido luego de la inmunización de caballos utilizando el receptor-binding domain de la glicoproteína Spike del virus. Nuestro producto mostró ser alrededor de 50 veces más potente en ensayos de seroneutralización in vitro que el promedio de los plasmas de convalecientes. Estos resultados nos permitirían testear la seguridad y eficacia de nuestro producto en ensayos clínicos de fase 2/3 a realizarse a partir de julio de 2020 en la zona metropolitana de Buenos Aires, Argentina.


Humans , Animals , Immunoglobulin Fab Fragments/isolation & purification , Coronavirus Infections/therapy , Immune Sera/immunology , Antibodies, Viral/isolation & purification , Antibodies, Viral/immunology , Antibodies, Viral/chemistry , Argentina , Immunoglobulin G/isolation & purification , Immunoglobulin G/chemistry , Immunoglobulin Fab Fragments/chemistry , Neutralization Tests , Pandemics , Betacoronavirus , SARS-CoV-2 , COVID-19 , Horses
17.
Curr Protoc Mol Biol ; 131(1): e119, 2020 06.
Article En | MEDLINE | ID: mdl-32319727

Antibodies are widely used in therapeutic, diagnostic, and research applications, and antibody derivatives such as F(ab')2 fragments are used when only a particular antibody region is required. F(ab')2 can be produced through antibody engineering, but some applications require F(ab')2 produced from an original formulated antibody or directly from a polyclonal antibody pool. The cysteine protease immunoglobulin-degrading enzyme (IdeS) from Streptococcus pyogenes digests immunoglobulin G (IgG) specifically and efficiently to produce F(ab')2 . Here we detail the production and purification of recombinant IdeS; its utilization to digest monoclonal or polyclonal antibodies to F(ab')2 fragments; and F(ab')2 purification through consecutive affinity chromatography steps. The resultant F(ab')2 exhibit high purity, retain antigen-binding functionality, and are readily utilizable in various downstream applications. © 2020 by John Wiley & Sons, Inc. Basic Protocol: Production and purification of F(ab')2 fragments from monoclonal and polyclonal antibodies using IdeS Alternate Protocol: Purification of polyclonal antigen-specific F(ab')2 fragments from human serum or secretions Support Protocol: Production and purification of IdeS.


Antibodies, Monoclonal/metabolism , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fab Fragments/metabolism , Animals , Antigens/immunology , Chromatography, Affinity , Cysteine Proteases/isolation & purification , Cysteine Proteases/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Humans , Immunoglobulin Fab Fragments/immunology , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin G/metabolism , Serum/chemistry , Streptococcus pyogenes/enzymology
18.
Article En | MEDLINE | ID: mdl-32062365

Antigen-binding (Fab) and crystallizable (Fc) fragments are the active components of yolk immunoglobulin (IgY), which have been widely used in the pharmaceutical field. However, the common purification methods for the Fab and Fc fragments use combinations of multi-columns are complex and time-consuming. The objective of this study was to improve the separation efficiency of the Fab and Fc fragments from the hydrolyzed IgY and increase the purity of the isolated Fab and Fc fragments. Natural IgY was hydrolyzed using papain for 6 hr and then treated with 45% saturated ammonium sulfate to remove small molecular-weight-peptides. The fraction containing Fab and Fc fragments was loaded on a DEAE-Sepharose ion exchange column and the Fab fraction was washed out first with 10 mM Tris-HCl buffer (pH 7.6). Then, the Fc fraction bound to the DEAE Sepharose was eluted with 10 mM Tris-HCl buffer (pH 7.6) containing 0.21 M NaCl. The purity of the two fragments was 88.7% and 90.1%, respectively. The results of Western blotting and MS analyses indicated that this method purified Fab and Fc fractions with high purity. This method is easy and simple compared with other methods, and the active fragments separated can be easily used.


Immunoglobulin Fab Fragments/analysis , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fc Fragments/analysis , Immunoglobulin Fc Fragments/isolation & purification , Immunoglobulins/metabolism , Ammonium Sulfate/chemistry , Animals , Blotting, Western , Chickens , Chromatography, Ion Exchange , Immunoglobulin Fab Fragments/chemistry , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/chemistry , Immunoglobulin Fc Fragments/metabolism , Immunoglobulins/chemistry , Papain/metabolism
19.
Protein Expr Purif ; 165: 105504, 2020 01.
Article En | MEDLINE | ID: mdl-31560987

Primary recovery of recombinant proteins from E. coli often describes a major challenge in downstream processing. After product release, the target protein usually accounts for only a small amount of total protein and has to be separated from a complex mixture of host cell proteins (HCPs) and non-proteinogenic impurities, such as DNA and lipids. Non-optimized procedures as well as unfavorable conditions at the extraction step and conditioning cause significant product loss already prior capture. In this study, we investigated pH conditioning during primary recovery for a subsequent cation exchange chromatography (CEX)-based capture of a recombinant Fab produced in E. coli. We showed that pH ≤ 5.0, which is necessary for CEX, led to high product loss due to protein precipitation during cell disruption and pH conditioning. Thus, we developed a procedure that resulted in a 25% increased Fab recovery prior capture based on simple re-arrangement of process steps and the use of a low-cost stabilizing agent. Summarizing, we show the huge potential for simple and cheap improvement of overall downstream process recovery by optimization of pH conditioning during primary product recovery.


Escherichia coli/metabolism , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/isolation & purification , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Buffers , Chromatography, Ion Exchange , DNA/chemistry , Drug Contamination , Hydrogen-Ion Concentration , Lipids/chemistry , Osmolar Concentration , Solubility , Technology, Pharmaceutical
20.
Biomacromolecules ; 21(2): 825-829, 2020 02 10.
Article En | MEDLINE | ID: mdl-31841628

Antigen-binding fragments of antibodies are biotechnologically useful agents for decorating drug delivery systems, for blocking cell-surface receptors in cell culture, for recognizing analytes in biosensors, and potentially as therapeutics. They are typically produced by enzymatic digestion of full antibodies and isolated from the undesirable fragment crystallizable (Fc) by affinity chromatography using Protein-A columns. However, while Protein-A has a strong "classical" interaction with Fc fragments, it can also more weakly bind to an "alternative" site on the heavy chain variable region of antigen-binding fragments. As such, purifying small amounts of antibody fragments by Protein-A chromatography can result in low yield. Moreover, loading larger amounts of antibody fragments onto a Protein-A column can result in poor separation, because of competition of Fc and antigen-binding fragments for immobilized Protein-A. This study demonstrates that Protein-A-based homogeneous scavenging resolves this issue by precisely controlling the stoichiometry of Protein-A to Fc fragments, something that is not possible for conventional flow-type systems, such as affinity chromatography.


Antigen-Antibody Complex/metabolism , Chromatography, Affinity/methods , Immunoglobulin Fab Fragments/metabolism , Immunoglobulin Fc Fragments/metabolism , Staphylococcal Protein A/metabolism , Animals , Antigen-Antibody Complex/isolation & purification , Humans , Immunoglobulin Fab Fragments/isolation & purification , Immunoglobulin Fc Fragments/isolation & purification , Protein Binding/physiology , Staphylococcal Protein A/isolation & purification
...